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Vortex connections at the surface are fundamental and prominent features in free-
surface vortical flows. To understand the detailed mechanism of such connection, we
consider, as a canonical problem, the laminar vortex connections at a free surface when
an oblique vortex ring impinges upon that surface. We perform numerical simulations
of the Navier–Stokes equations with viscous free-surface boundary conditions. It is
found that the key to understanding the mechanism of vortex connection at a free
surface is the surface layers: a viscous layer resulting from the dynamic zero-stress
boundary conditions at the free surface, and a thicker blockage layer which is due to
the kinematic boundary condition at the surface. In the blockage layer, the vertical
vorticity component increases due to vortex stretching and vortex turning (from the
transverse vorticity component). The vertical vorticity is then transported to the free
surface through viscous diffusion and vortex stretching in the viscous layer leading to
increased surface-normal vorticity. These mechanisms take place at the aft-shoulder
regions of the vortex ring. Connection at the free surface is different from that at a
free-slip wall owing to the generation of surface secondary vorticity. We study the
components of this surface vorticity in detail and find that the presence of a free
surface accelerates the connection process. We investigate the connection time scale
and its dependence on initial incidence angle, Froude and Reynolds numbers. It is
found that a criterion based on the streamline topology provides a precise definition
for connection time, and may be preferred over existing definitions, e.g. those based
on free-surface elevation or net circulation.

1. Introduction
For vortical flows near a free surface, an important interaction mechanism is that

vortex lines may disconnect and subsequently terminate at the free surface resulting
in persistent normal vorticity on the free surface (Bernal & Kwon 1989). Such vortex
connection phenomena are a result of three-dimensional vortex dynamics and viscous
effects. It turns out that vortex connection is fundamental to viscous flows involving
free surfaces and plays an important role in a large variety of free-surface flows such
as ocean turbulence, breaking waves and ship wakes (Kasischke, Meadows & Jackson
1984; Sarpkaya 1996).

According to the Helmholtz theorem, a vortex filament cannot begin or end within a
fluid. Nevertheless, mechanisms which may allow the filament to (disconnect and then)
reconnect at a boundary are not precluded. If the fluid is inviscid, however, Kelvin’s
circulation theorem requires the vortex filament to move as a material filament and
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hence it cannot be broken in the fluid. Thus vortex reconnection at a boundary must
be an inherently viscous phenomenon. Kambe (1984) showed that for two oppositely
signed vortex systems in a two-dimensional straining field, the cancellation of vorticity
has a critical time scale proportional to a logarithm of the Reynolds number for
fixed strain rate. Using a viscosity-driven model, Saffman (1990) obtained a set of
model equations to describe the reconnection of two two-dimensional counter-rotating
vortex cores in close proximity. He provided preliminary numerical results together
with connection time scales predicted by the model. Shelley, Meiron & Orszag (1993)
later showed that the asymptotic behaviour of Saffman’s model can be understood
completely in terms of the behaviour of special solutions of the model equations,
which lead to a time scale for the reconnection similar to that of Kambe (1984).
Numerical simulations of vortex reconnections provide additional insight into this
problem. Kida, Takaoka & Hussain (1991) performed direct Navier–Stokes equations
simulation of the laminar collision and subsequent connection of two identical vortex
rings. They showed that the mechanism of connection is that of bridging (Melander
& Hussain 1990) and that the location of initial connection is close to the position
of maximum strain rate.

Vortex connection at a free surface is often considered to be analogous to two-
vortex reconnections in that the latter is the zero-Froude-number limit (i.e. the free-slip
wall case) of the former. The two problems are, however, dynamically different in
that on a free surface constant pressure obtains, while on a free-slip wall tangential
pressure gradients play a role. In the presence of a free surface, the connection
mechanism is also more complicated since the free surface can deform and generate
(secondary) surface vorticity which has a significant effect on the overall connection
process. According to Batchelor (1967), the surface vorticity in two-dimensional flow
is equal to twice the tangential surface velocity multiplied by the surface curvature,
which has been shown experimentally (e.g. Sarpkaya & Suthon 1990). Recently,
Longuet-Higgins (1998) pointed out that in three-dimensional flow, in addition to a
component of vorticity perpendicular to the flow there is also a component parallel
to the direction of flow.

A particularly useful yet simple model for understanding free-surface vortex con-
nection is the canonical problem of a vortex ring approaching and connecting to a free
surface. For this problem, the relevant length scale is the ring radius R, the velocity
scale is then U = Γ0/R, where Γ0 is the (initial) velocity circulation of the ring. Based
on these scales, the parameters characterizing this problem are Reynolds number
Re = Γ0/ν, where ν is the kinematic viscosity, and Froude number Fr = Γ0/g

1/2R3/2,
where g is the acceleration due to gravity. (Although surface contamination can have
important effects on the vortical free-surface interactions, e.g. Bernal et al. 1989, Tsai
& Yue 1995, for simplicity, surface tension and surfactant effects are not considered
here.)

This vortex ring connection problem has been a subject of experimental investi-
gation. Bernal & Kwon (1989) performed the first clear flow visualization study of
vortex ring connection to a free surface. Recently, Gharib et al. (1992), Gharib &
Weigand (1996) reconsidered the problem and provided quantitative measurements
of the surface and centre-plane vorticity using digital particle image velocimetry to
show the role of the surface secondary vorticity.

Motivated largely by the experimental studies, free-surface vortex connections have
also been studied numerically. Dommermuth & Yue (1990) and Dommermuth (1993)
performed laminar-flow simulations of a sinusoidally perturbed vortex tube moving
parallel to a free surface and showed that the generation of helical vorticity plays a
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role in the vortex breakdown leading to subsequent surface connection. This problem
was also studied experimentally by Willert & Gharib (1997). Simulations for the case
of a ring approaching a deformable surface were performed by Lugt & Ohring (1994)
and Ohring & Lugt (1996). These simulations provide a more complete picture of the
process of free-surface vortex connection.

While vortex connections at a free surface have been observed experimentally and
in simulations, detailed mechanism of the connection processes has not been fully
obtained. In this work, we study the mechanism of laminar vortex ring connection at
a free surface by direct simulation of the Navier–Stokes equations with full viscous,
free-surface boundary conditions. For simplicity, we consider relatively small Froude
numbers for which linearized free-surface boundary conditions apply. The main goals
of this study are: (i) to elucidate the detailed mechanism of the vortex connection
process in terms of the vorticity structures, evolutions and transformations near the
free surface; (ii) to understand the role of the free surface in the connection process;
and (iii) to identify/quantify the vortex connection time and its dependence on the
initial incidence angle, Froude and Reynolds numbers.

The rest of the paper is organized as follows. In § 2 we provide the mathematical
formulation that describes the viscous interaction of a vortex ring with a free surface;
and in § 3 we discuss its numerical implementation. We present the simulation results
in § 4. We first elucidate the general features of vortex ring connection to a free
surface. The detailed mechanism for the vortex connection is then investigated in
terms of near-surface vorticity evolutions and transformations and the role of the
surface layers. We finally consider the question of connection time (based on free-
surface streamline topology) and study its dependence on the initial incidence angle,
and Froude and Reynolds numbers of the ring. In § 5, we make some concluding
remarks. A brief discussion of the relationship between the instantaneous free-surface
elevation and surface-normal vorticity is included in an Appendix.

2. Mathematical formulation

2.1. Field equations

We consider the unsteady incompressible viscous flow of a Newtonian fluid under a
free surface. Referring to figure 1 for the vortex ring, the vertical coordinate z = x3 is
positive upward, and z = 0 coincides with the undisturbed free surface. For simplicity,
we choose physical units so that the (initial) ring radius R, the (initial) circulation of
the ring Γ0, and fluid density ρ are unity. All subsequent variables are normalized
accordingly unless otherwise stated. For an isotropic and homogeneous fluid, the
normalized Navier–Stokes equations for conservation of momentum have the form

∂ui

∂t
+

∂

∂xj
uiuj = − ∂p

∂xj
+

1

Re

∂2ui

∂xj∂xj
, (2.1)

where v = {ui} is the velocity, and p is the hydrodynamic pressure which is related to
the total pressure P by

p = P +
1

F2
r

z.

The Navier–Stokes equations (2.1) must be solved together with the continuity
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Figure 1. Domain of computation and coordinate system.

equation

∂ui

∂xi
= 0. (2.2)

2.2. Free-surface boundary conditions

We derive the boundary conditions at the free surface. Let the free-surface elevation
be given by η(x, y, t). The fact that no fluid particle leaves the free surface gives the
kinematic boundary condition

ηt + uηx + vηy − w = 0 on z = η. (2.3)

Before the dynamic boundary conditions can be obtained, we first write down the
total stress tensor σ in matrix form:

σ =

 −P + 2ux/Re (uy + vx)/Re (uz + wx)/Re
(vx + uy)/Re −P + 2vy/Re (vz + wy)/Re
(wx + uz)/Re (wy + vz)/Re −P + 2wz/Re

 . (2.4)

The directional unit vectors on the free surface can be expressed in terms of η:

n =
{−ηx,−ηy, 1}

(η2
x + η2

y + 1)1/2

t1 =
{1, 0, ηx}

(η2
x + 1)1/2

t2 =
{0, 1, ηy}

(η2
y + 1)1/2


on z = η, (2.5)

where {n} is the unit vector normal to the free surface, and {t1} and {t2} are unit
tangent vectors in the (x, z)- and (y, z)-planes respectively.

Neglecting surface tension and external stresses, the balance of (two) tangential
and (one) normal stress components on the free surface gives

t1 · σ · nT = 0

t2 · σ · nT = 0

n · σ · nT = 0

 on z = η. (2.6)
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Substituting (2.4) and (2.5) into (2.6) yields the corresponding dynamic boundary
conditions on the free surface in terms of velocity and η:

2ηx(wz − ux)− ηy(uy + vx) + (1− η2
x)(uz + wx)− ηxηy(vz + wy) = 0 on z = η, (2.7)

2ηy(wz − vy)− ηx(uy + vx) + (1− η2
y)(vz + wy)− ηxηy(uz + wx) = 0 on z = η, (2.8)

η

F2
r

− p+
2

Re(1 + η2
x + η2

y)
(η2
xux + ηxηy(uy + vx) + η2

yvy

−ηx(uz + wx)− ηy(vz + wy) + wz) = 0 on z = η. (2.9)

We consider moderate to small Froude numbers so that the free-surface boundary
conditions (2.3), (2.7), (2.8) and (2.9) can be linearized. Assuming η = O(ε) � 1, we
expand the conditions on the undisturbed free surface z = 0 and obtain, to leading
order of ε,

ηt + (uη)x + (vη)y − w = 0 + O(ε2), (2.10)

2ηx(wz − ux)− ηy(uy + vx) + uz + wx − η(uxx − uzz + vxy) = 0 + O(ε2), (2.11)

2ηy(wz − vy)− ηx(uy + vx) + vz + wy − η(uxy + vyy − vzz) = 0 + O(ε2), (2.12)

p =
1

F2
r

η +
2

Re
wz + O(ε2). (2.13)

These free-surface boundary conditions ((2.10)–(2.13)) are used in the present study.
If z = 0 is a free-slip wall, the tangential stresses, normal velocity and normal

pressure gradient are zero there, and the appropriate boundary conditions on z = 0
are: uz = vz = w = pz = 0. These conditions are recovered from (2.10)–(2.13) as a
limiting case. Setting Fr = 0 in (2.13), we obtain η = 0. Elimination of η from (2.10)
leads to w = 0. Therefore, (2.11) and (2.12) can be written as uz = 0 and vz = 0. With
these conditions, pz = 0 is obtained from (2.1), and thus the case of a free-slip wall is
the Fr = 0 limit of the present problem.

2.3. Surface vorticity

The vorticity at the free surface plays an important role in the connection process,
and differs substantially from that for the free-slip wall. Let the vorticity be denoted
by ω = (ωx ≡ wy − vz, ωy ≡ uz − wx, ωz ≡ vx − uy), and the surface vorticity defined
as ωs ≡ (ωx, ωy)|z=η . The general expression for ωs in terms of the relevant surface
parameters, i.e. surface tangential velocities u, v and elevation η, is quite involved
for the fully nonlinear case. Consistent with the linearization of § 2.2, we seek the
appropriate results to leading order in terms of O(ε).

Using the free-surface dynamic conditions (2.7) and (2.8), we obtain

ωs
x = 2wy − 2ηy(vy − wz)− ηx(uy + vx) + O(ε2)

ωs
y = −2wx + 2ηx(ux − wz) + ηy(uy + vx) + O(ε2)

}
on z = η. (2.14)

We now expand (2.14) on z = 0:

ωs
x = 2wy + 2ηwyz − 2ηy(vy − wz)− ηx(uy + vx) + O(ε2)

ωs
y = −2wx − 2ηwxz + 2ηx(ux − wz) + ηy(uy + vx) + O(ε2)

}
on z = 0. (2.15)

Using the continuity equation (2.2), we express wz in terms of ux and vy in (2.15),
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and apply the kinematic boundary condition (2.10) on z = 0 to eliminate w to finally
obtain linearized forms of the surface tangential vorticity:

ωs
x = 2ηyt + 2ηxyu+ 2ηyyv + ηxuy − ηxvx + O(ε2) on z = 0, (2.16)

ωs
y = −2ηxt − 2ηxyv − 2ηxxu+ ηyuy − ηyvx + O(ε2) on z = 0. (2.17)

Note that ωs is defined on z = η only; the right-hand sides of (2.14) are evaluated at
z = η; while the right-hand sides of (2.15)–(2.17) are evaluated at z = 0.

The present expression for the surface vorticity components (2.16) and (2.17) are
extensions of existing formulations. Batchelor (1967) and Lugt (1987) considered the
surface vorticity in steady two-dimensional flow, which corresponds to (2.16) and
(2.17) with only the third terms on the right-hand sides. Lundgren (1988) and Gharib
(1994) analysed the unsteady two-dimensional case, which corresponds to the first
terms on the right-hand sides of (2.16) and (2.17). Recently, Longuet-Higgins (1998)
pointed out that for steady three-dimensional flow, there exists a vorticity component
parallel to the direction of flow. This steady three-dimensional effect corresponds
directly with the second, fourth, and fifth terms in (2.16) and (2.17) in the present
Cartesian coordinates.

2.4. Conservation of energy

Multiplying (2.1) by ui and integrating over a finite volume V enclosed by boundary
S , we obtain the equation for the evolution of the total kinetic energy:

d

dt

∫ ∫ ∫
V

uiui

2
dV =

∫ ∫
S

njui

[
−pδij +

1

Re

(
∂ui

∂xj
+
∂uj

∂xi

)]
dS

− 1

Re

∫ ∫ ∫
V

(
∂ui

∂xj
+
∂uj

∂xi

)
∂ui

∂xj
dV . (2.18)

Upon substitution of the free-surface boundary conditions (2.10)–(2.13), we obtain

d

dt

∫ ∫ ∫
V

uiui

2
dV = − 1

2F2
r

d

dt

∫ ∫
Sf

η2dS − 1

Re

∫ ∫ ∫
V

(
∂ui

∂xj
+
∂uj

∂xi

)
∂ui

∂xj
dV , (2.19)

where Sf is the projection of the free surface onto the (x, y)-plane, and we have
assumed that there is no net contribution to (2.18) from the remaining portions of S .
The energy conservation (2.19) is checked and conserved in all our numerical results
to within O(1)%.

3. Numerical method
3.1. Numerical scheme

In this paper, the three-dimensional Navier–Stokes equations (2.1) and the continuity
equation (2.2) combined with the free-surface boundary conditions (2.10)–(2.13) are
solved numerically as an initial-boundary-value problem. The computational domain
is closed by imposing periodic conditions on the four vertical boundaries far away,
and by a free-surface boundary on the top and a free-slip boundary on the bottom.
Spectral and second-order finite-difference discretizations are used in the horizontal
and vertical dimensions respectively. A second-order Runge–Kutta scheme is used
for time integration. We use a projection method which couples the continuity
equation with the momentum equations to obtain a Poisson equation with a divergence
correction for the pressure. The Poisson equation for the pressure is solved at each sub
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time step. In order to maintain continuity in the numerical sense, the Poisson equation
is solved using two grid systems – a regular grid and a staggered grid shifted in the
vertical direction by half a grid spacing. The vertical velocity (w) is assigned on the
staggered grid while all other variables (u, v and p) are assigned on the regular grid.
Among the free-surface boundary conditions, the normal-stress condition (2.13) is
used as Dirichlet condition for the Poisson equation; the tangential-stress conditions
(2.11) and (2.12) are used to evaluate the z-derivatives of horizontal velocities in (2.1)
at the free surface; and the kinematic condition (2.10) is used to update the free-
surface elevation. Details of the numerical implementation can be found in Zhang
(1996).

3.2. Initial conditions

The initial set-up of the vortex ring is shown in figure 1. The distance between the
centre of the ring and the undisturbed free surface is H . The radius of the vortex
ring is R and the vortex core radius is a. The generating axis of the vortex ring is
in the direction of advection of the ring which makes an angle α measured from the
+z-axis. (α = 90◦ for a ring traveling parallel to the +x-axis.)

To specify the initial vorticity field of the vortex ring, we use a Gaussian core
distribution, which satisfies Navier–Stokes equations for viscous flow (Lamb 1932):

ω = ωc exp

(
− (x− x0)

2 + (y − y0)
2 + (z − z0)

2

a2

)
, (3.1)

where ωc is the (initial) maximum core vorticity and (x0, y0, z0) is the centre of the
core which in this case corresponds to a circle at the ring geometric centre. Note that
the circular symmetric (3.1) in general obtains for small a/R. For the present study,
a/R = 0.35 (see table 2) and the initial core distribution is expected to change slightly
after the simulation is started.

Given the initial vorticity distribution ω, the velocity field required to start the
numerical simulation can be obtained in terms of the vector stream function ψ
defined by V = ∇ × ψ. The velocity is obtained after solving the Poisson equation
governing ψ:

∇2ψ = −ω. (3.2)

3.3. Validation and convergence tests

We perform a number of tests to establish the accuracy and convergence of our
numerical method. We first consider two problems for which analytic solutions exist:
the translation and diffusion of a Lamb vortex filament placed asymmetrically in a
cubic domain, and the surface vorticity associated with a viscous three-dimensional
standing wave. We then perform convergence tests for the vortex ring problem itself
and also compare the results to experimental measurements.

3.3.1. Decay of a Lamb vortex filament

Since the free decay of a Lamb vortex in an unbounded domain does not in-
volve the nonlinear convective terms, we consider instead a vortex filament placed
asymmetrically inside a cubic periodic domain. Free-slip conditions are applied on
the boundaries at the top and the bottom. Because of the presence of the ‘image’
vortices, the vortex filament orbits within the box. For small core sizes relative to the
dimension of the domain, however, the core vorticity should still decay at a rate close
to that in an unbounded domain.

Figure 2 shows the convergence of the core vorticity value (at t = 16) with grid size
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Figure 2. Relative error of maximum vorticity |ωmax − ωexa|/ωexa at t = 16 for a decaying Lamb
vortex filament in a cubic box as a function of: (a) grid Reynolds number Γ∆/νa with fixed
normalized time step δtΓ/πa2 = 0.005; and (b) normalized time step δtΓ/πa2 with fixed grid
Reynolds number ∆Γ/νa = 12.5.

and time step respectively. Here, ωmax is the computed maximum core vorticity value
and ωexa = 1/(a2 + 4νt) the analytic unbounded domain solution. The parameters
for this case are: initial circulation of the Lamb vortex Γ0 = π; initial core radius
a = 0.25; and equal grid spacing ∆x = ∆y = ∆z = ∆.

3.3.2. Viscous three-dimensional standing wave

To verify the treatment of the free-surface boundary conditions, we consider a
three-dimensional standing wave of a viscous fluid, where, for small wave amplitude,
the free-surface elevation η is obtained in closed form (Lamb 1932):

η = a cos (σt) exp (−2νκ2t) cos (kxx) cos (kyy) = A(t) cos (kxx) cos (kyy). (3.3)

Here kx, ky are the wavenumbers along the x- and y-axes respectively, κ2 = k2
x + k2

y ,

and the wave frequency σ is given by the dispersion relation, σ2 = κg, for large fluid
depth.

To be specific, we consider a case with Fr = aσ/(g/κ)1/2 = 1/(2π) and Re =
aσ/κν = 500, and compare our computational results to (3.3) after one wave period
2π/σ. Table 1 shows the relative errors in the wave amplitude, A, and the surface
vorticity ωs (see (2.16) and (2.17)), for different space and time discretization. The
numerical scheme predicts well the attenuation of the wave amplitude and surface
vorticity.

3.3.3. Vortex ring connection

We finally consider the subject problem of the connection of a vortex ring at a
free surface. The physical parameters of the cases we study in this paper are listed
in table 2. We show here the convergence results for Case II using 643 and 1283 grid
points respectively. Figure 3(a) shows the time evolution of the maximum transverse
vorticity ωymax (of the upper limb of the ring) on the symmetry plane y = 0 and
maximum vertical vorticity ωzmax on the free surface z = 0. The results are clearly
grid independent. Similar convergence for the evolution of the surface wave energy∫∫

Sf
η2dS/F2

r is also obtained and is plotted in figure 3(b).
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∆/λ δt σ/2π εA εω

0.01 0.01 0.0031 0.015
0.008 0.01 0.0014 0.010
0.008 0.002 0.0012 0.006
0.008 0.001 0.0011 0.005

Table 1. Relative errors in the wave amplitude εA = |A − Aexa|/Aexa and surface vortic-
ity εω = max(|ωs − ωs

exa|)/max(|ωs
exa|), at time t = 2π/σ for the attenuation of a viscous

three-dimensional standing wave as a function of grid size ∆ and time step δt.
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Figure 3. Time evolution of (a) the maximum transverse vorticity on y = 0, ωymax, and maximum
vertical vorticity on z = 0, ωzmax; and (b) total surface wave energy for the vortex connection at
a free surface corresponding to Case II of table 2. The results shown are for simulations obtained
using: ———— , 1283 grid points; and – – – – , 643 grid points.

In all subsequent computations, we use 1283 grid points with δt = 0.005. The
conservation of total energy according to (2.18) is within O(1)% error and the
maximum mass divergence at any grid points is less than 10−14 for all the simulations.

As a final validation, we compare our numerical predictions to experimental mea-
surements. Figure 4 shows such a comparison for the evolution of ωymax and ωzmax

during the connection process for the case studied experimentally by M. Gharib
(1992, personal communication), with the computations and experiments using iden-



216 C. Zhang, L. Shen and D. K. P. Yue

α
Case Re Fr (deg.) H Tψ TΓ

I 1570 0.00 80 1.57 2.61 2.56
II 1570 0.47 80 1.57 2.49 2.58
III 1570 0.47 70 1.875 5.20 3.20
IV 1570 0.47 60 1.875 7.38 3.41
V 942 0.47 60 1.875 6.08 3.74
VI 471 0.47 60 1.875 4.09 5.11

Table 2. Physical parameters used in the different simulations (all based on the initial circulation
of the vortex ring Γ0 ≡ 1 and the ring radius R ≡ 1). The connection times based on streamline
topology Tψ and on velocity circulation TΓ are also given for each case. The rings have an initial
core radius a = 0.35. The computational domain size is 8× 8× 4, a 1283 grid is used, and the time
step is δt = 0.005.

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12

T

Computation xymax/xc

Computation xzmax/xc

Experiment xymax/xc

Experiment xzmax/xc

Figure 4. Comparison between experiments (Gharib 1992, personal communication) and compu-
tations of the time evolution of the maximum transverse vorticity on y = 0, ωymax, and maximum
vertical vorticity on z = 0, ωzmax during the connection of a vortex ring at a free surface. The
physical parameters are: Re = 1150, Fr = 0.19, α = 83◦, and a/R = 0.3.

tical physical parameters: Re = 1150, Fr = 0.19, α = 83◦, and a/R = 0.3. The decrease
of ωymax accompanied by an increase in ωzmax of comparable magnitude is a clear
indication and measure of the surface connection. The overall comparison between
measurement and computation is quite satisfactory.

4. Numerical results
To understand the mechanisms of vortex connection at a free surface and depen-

dence on physical parameters, we perform six simulations with different Reynolds
numbers, Froude numbers, and initial incidence angles of the vortex ring. These
parameters for each simulation are listed in table 2. We organize our analysis of the
numerical results as follows: § 4.1 presents general features of the vortex connection;
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§ 4.2 details the mechanisms of vorticity transformation and the role of the surface
layers in these transformations; § 4.3 looks at a definition of vortex connection time
based on streamline topology and examines its dependence on Reynolds and Froude
numbers, and initial incidence angle.

4.1. General features of vortex connection at a free surface

4.1.1. Evolution of vorticity iso-surface and vortex line structures

The evolution of the vortex ring as it approaches and meets the free surface is shown
in figure 5 where iso-surfaces of vorticity are plotted at successive times. For reference,
the corresponding free-surface elevations created by the approaching/connecting
vortex are also plotted. A different and often useful way to show the vorticity
evolution is to plot representative vortex filaments which are shown in figure 6 at
three of the time instants shown in figure 5. Note that the box shown translates with
the vortex ring.

The main features and stages of the connection process are shown in the evolution
of the primary (ring) and secondary (free-surface) vorticity:

(a) The vortex ring approaching the free surface (t = 3, figures 5a, 6a) is ac-
companied by the deformation of the free surface and the generation of secondary
surface vorticity to obtain the value given by (2.16) and (2.17).

(b) The ring vortex impinges the surface vorticity at t ∼ 5 (figure 5b, g). The top
portion of the ring deforms and stretches near the free surface. The iso-surface of
surface secondary vorticity is ‘bent’ by the induced flow which is reflected also in the
crescent-like surface depression.

(c) At t ∼ 6 (figures 5c, 6b), some of the vortex lines aft of the main tube
disconnect and attach to the free surface, resulting in a pair of counter-rotating
normal vortices on the free surface. Note that the connection (indicated say by the
two broken/connected vortex filaments in figure 6b) occurs at the aft portion and
towards the two ‘shoulders’ of the vortex ring. Figure 6b (and 6a) also indicates vortex
stretching near the symmetry plane y = 0 both in the primary and surface vorticity
resulting in stronger vorticity magnitudes near this centre-plane. On the free surface,
a pair of surface depressions (‘dimples’) are seen. (A single positive surface elevation
forward of the dimple pair due to the induced velocity of the main approaching ring
is now also quite distinct.)

(d) At t ∼ 8 (figure 5d), the surface dimples move apart indicating the widening
of the underlying U-shaped vortex structure. Near the centre-plane, the unconnected
(surface-parallel) vorticities are advected forward due to velocity induced by the
remaining ring. The horizontal vorticity near the free surface everywhere undergoes
large viscous dissipation (cf. § 4.2). This effect is particular observable near the centre-
plane as much of the (surface-parallel) vorticity is diminished and eventually vanishes
(see figure 5e).

(e) At t = 10 (figure 5e) the break-up of the primary vortex and its connection to
the surface have already past completion. The two surface dimples continue to move
apart and only connected (surface-normal) vorticity remains at the free surface.

(f) Figures 5(f) and 6(c) at t = 30 show the features occurring during the second
connection, this time involving the lower limb of the ring. The vortex mechanisms
are similar to the first connection. The second connection leads to a second pair of
surface dimples inside and forward of the first pair. The main underlying vorticity is
now in the form of two U-shaped (a single W-shaped) vortices with the outer/inner
limbs associated respectively with the first/second connections. These two U-vortices
eventually separate and move apart on either side of the centre-plane.
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(a) (d)

(b) (e)

(c) ( f )

(g)

Figure 5. Evolution of the vortex ring and the free-surface elevation for Case II. Iso-surfaces of
vorticity are plotted for: the primary vortex at 12.5% of the initial maximum value (blue); and
secondary near-surface vorticity at 5% of the initial maximum value (magenta). The free-surface
displacement (blue for elevation and red for depression) is plotted above (displaced vertically for
clarity). The plots are shown at times: t = (a) 3; (b) 5; (c) 6; (d) 8; (e) 10; (f) 30; and (g) close-up
of (b) near the free surface (only one of the symmetric sides is shown).
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(a)

(b)

(c)

Figure 6. Evolution of the vortex ring and the free-surface elevation for Case II. Representative
vortex filaments are shown for the primary vortex and secondary near-surface vorticity. The
magnitude of the vorticity along the filaments is indicated by colours (purple/blue is greater than
red). The free-surface displacement (blue for elevation and red for depression) is plotted above
(displaced vertically for clarity). The plots are shown at times: t = (a) 3; (b) 6; (c) 30.
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Figure 7. Evolution of velocity circulations for Case II: Γy on the centre-plane y = 0; and Γz on
the free surface z = 0; normalized by initial ring circulation Γ0.

Many of the above features of first and second connections to a free surface
resemble what has been visualized experimentally (Bernal et al. 1989; Gharib et al.
1992; Gharib & Weigand 1996).

4.1.2. Evolution of velocity circulation and maximum vorticity

The main quantitative feature of vortex connection is the rapid decrease of the
total enstrophy of the original vortex tube on the centre (vertical) plane accompanied
by a comparable increase of enstrophy on the normal (horizontal) plane.

Figure 7 plots the evolution of the total circulations: Γy around the upper limb
of the vortex ring on y = 0; and Γz on z = 0 (for y > 0), for Case II. The rate of
decrease (increase) of Γy (Γz) is large during 5 . t . 8. Kinematic processes resulting
in the transfer of Γy to Γz are also observed in computations (but for a free-slip wall)
by Melander & Hussain (1990) and Kida et al. (1991); and experimentally by Gharib
& Weigand (1996) and Willert & Gharib (1997).

Based on figure 7 and the qualitative pictures of § 4.1.1, we can identify three (very)
approximate times which separate the different phases of the connection process (for
Case II): t = tbeg ∼ 5 which marks the beginning of the connection (when Γy/Γz
in figure 7 have decreased/increased appreciably); t = tmid ∼ 6.5 (when Γy ∼ Γz in
figure 7) marking roughly the mid-point of the connection; and the end of the (first)
connection t = tend ∼ 8 (when Γy , Γz have reached an appreciable fraction of their
asymptotic values). These are useful for later reference.

An alternative to velocity circulation is to consider the maximum vorticity magni-
tudes on the symmetry and free-surface planes. Their evolution is plotted for Case II
in figure 3(a). The behaviour is qualitatively similar to that in figure 7 but with ωzmax

displaying an appreciable post-connection decay due to viscous diffusion.

4.1.3. Free-surface elevation

As mentioned earlier, an important feature of the vortex connection to a free
surface is the deformation of the free surface during the vortex/surface interaction
and resulting generation of surface vorticity. For this problem, to leading order, the
free-surface elevation η is related to the induced surface velocity in two ways: surface
normal velocity w which correlates (positively) with ηt via the kinematic condition
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(2.10); and surface-parallel velocity magnitude which correlates (negatively) with η
via the normal-stress free-surface condition (2.13) as a Venturi effect.

In figure 3(b), it is seen that total surface wave energy rises before connection takes
place and has indeed past its maximum value when connection begins (at tbeg). The
surface elevation features are seen in figures 5 and 6. There are two basic patterns
of surface deformation above the connecting vortex ring depending on whether it is
in the early or late stages of vortex connection: (i) in the early stage of connection
(t somewhat less than tmid), the free surface has a crescent-shaped depression slightly
behind the upper limb of the impinging vortex ring (see figure 9); and (ii) in the later
stage of connection (t & tmid), there are surface depressions (dimples) associated with
connected vortices. These two free-surface patterns are shown clearly in figure 8.

The question of whether ωz on z = 0 correlates well with pressure and/or elevation
at the surface is of some importance since the latter are often used to indicate the
former and hence deduce the location and duration of surface connection (see e.g.
Bernal & Kwon 1989; and Dommermuth 1993 who discussed this point). Figure 8
also plots the dynamic pressure p and normal vorticity ωz on z = 0. Comparing
the surface elevation η with p and ωz , it is found that η and p correlate well, in
general, while η and ωz much less so. The former can be seen as a consequence of
the condition of vanishing total normal stress, (2.13), where η/Fr2 differs from p by
only a viscous term 2wz/Re which is small for large Re.

The poor correlation between η and surface ωz turns out to be generally true.
Indeed, except for axisymmetric ωz distributions, neither the extrema nor contours
of η and ωz correlate well. Some specific examples are given in the Appendix.
That surface patterns do not in general provide reliable information on connected
surface vorticity has an immediate consequence for experimental observations where
visualization or measurements of the former (say using shadowgraphs or wave probes)
are often relied upon to understand the features of the latter. This is especially so
when ωz contours are not circular/axisymmetric as in the early connection stage.

4.1.4. Secondary surface vorticity

Figures 5 and 6 show the generation of induced secondary vorticity just beneath the
free surface which is prominent for t . tmid. Such surface vorticity plays an important
role in free-surface vortex connection as pointed out by the measurements of Gharib
et al. (1992) and Gharib & Weigand (1996).

The generation of surface (parallel) vorticity is directly related to the free-surface
deformations (and induced surface-parallel velocities) according to (2.16) and (2.17).
As the primary vortex approaches the free surface, the main surface deformation is
a crescent-shaped depression near y = 0 (cf. figures 5b, 8a). The associated surface
vorticity is thus also concentrated near the centre-plane.

We plot in figure 9 at time t = 4 (< tbeg) on the symmetry line y = 0, the
longitudinal variations of η(x), the longitudinal velocity u(x), ωs

y(x), and the surface
values of −2uηxx and −2ηxt (see (2.17)). Note that on this symmetry line, the terms
contributing to ωs

y in (2.17) which are associated with three-dimensional effects
(Longuet-Higgins 1998) vanish. As a reference, we plot also the transverse vorticity
of the primary vortex ωy(x) on the centre-plane (at z = −0.4 where the core is).
Comparing η(x) to u(x), we see the direct correlation of the surface depression with
the induced tangential velocity. Owing to the inclination angle of the ring α (= 80◦ in
this case), however, η is shifted slightly backwards relative to ωy(x) of the upper limb
of the ring. The surface secondary vorticity ωs

y has (mainly) an opposite sign to the
primary ωy as expected. The correlation between η and ωs

y is, however, less direct, the
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Figure 8. Contours of free-surface elevation η (contour increment 0.004); dynamic pressure p
(contour increment 0.008); and surface-normal vorticity ωz/ωc (contour increments 0.02 at t = 5.5
and 0.1 at t = 8) for Case II for: (a) early connection stage t = 5.5; and (b) late connection stage
t = 8. Solid/dashed lines represent positive/negative contour values.

latter being a combination of two effects: the curvature effect −2uηxx (u is negative,
and ηxx is large/positive near the centre of the η depression and small/negative
elsewhere); and the unsteady effect −2ηxt of comparable magnitude and similar sign
as −2uηxx.

The remaining terms of (2.17) represent the three-dimensional effect (cf. Longuet-
Higgins 1998) and in general results in an angle θ, say, between the surface velocity
(us, vs) and ωs = (ωs

x, ω
s
y) (in the absence of this effect, θ ≡ 90◦). Figure 10 illus-

trates this with vector plots of (us, vs) and ωs and contours of sin θ. We note that



Mechanism of vortex connection at a free surface 223

0.08

0.04

0

–0.04

–0.08

–3 –2 –1 0

x

Figure 9. Longitudinal variations of surface (z = 0) quantities on the symmetry plane (y = 0) at
t = 4 for Case II: −··−··− , u/5; −−− −−− , η× 5; ———— , ωs

y/ωc; – – – – , −2uηxx/ωc; and · · · · · · · ,
−2ηxt/ωc. For reference, we plot also 0.1×ωy/ωc of the primary (upper limb) ring vortex on y = 0
and z = −0.4 (where the core is): – · – · – .
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Figure 10. Three-dimensional effects on the surface vorticity at t = 4 for Case II: (a) surface
velocity vectors (us, vs); (b) surface vorticity vectors (ωs

x, ω
s
y); and (c) contours of sin θ where θ is the

angle between (a) and (b). Note that sin θ = 1 in the absence of the three-dimensional contributions
to ωs.

sin θ ≈ 1 everywhere |ωs| is appreciable, and the three-dimensional contributions are
appreciable only away from the centreline and the axis of maximum ωs

y .

4.1.5. Vorticity flux at the free surface

The vorticity flux at a free surface is a useful way to demonstrate vortex connection
and the disappearance of horizontal vorticity during connection is associated with its
viscous flux out of the free surface (e.g. Lugt 1987; Rood 1994a, b; Gharib & Weigand
1996).

Figure 11 plots the longitudinal variation of the transverse vorticity flux R−1
e ∂ωy/∂z

on y = z = 0 compared to the distribution of ωy on the y = 0 plane during
connection. Note that ωy is negative here hence figure 11 indicates that (negative)
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Figure 11. (a) Longitudinal variation of vorticity flux R−1
e ∂ωy/∂z at t = 7 on y = z = 0:

———— , R−1
e ∂ωy/∂z; – – – – , ∂u/∂t; · · · · · · · , ∂(u2/2 + p)/∂x. (Note that R−1

e ∂ωy/∂z is
indistinguishable from the sum of ∂u/∂t and ∂(u2/2 + p)/∂x.) (b) Contours of ωy/ωc on y = 0 (the
contour increment is 0.05).

transverse vorticity is fluxed out of the fluid as the primary vortex impinges the
surface.

From (2.1) and (2.2), the vorticity flux R−1
e ∂ωy/∂z can be written as

1

Re

∂ωy

∂z
=

1

Re

∂

∂z

(
∂u

∂z
− ∂w

∂x

)
=

1

Re

(
∂2u

∂z2
+
∂2u

∂x2
+

∂2v

∂x∂y

)
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
+

1

Re

(
∂2u

∂y2
+

∂2v

∂x∂y

)
. (4.1)

On the symmetry plane y = 0, v ∂u/∂y and R−1
e ∂2v/∂x∂y vanish, R−1

e ∂2u/∂y2 is
negligible, and (4.1) can be approximated by its two-dimensional form. Near the free
surface, the term w∂u/∂z is negligible, and we finally obtain

1

Re

∂ωy

∂z
≈ ∂u

∂t
+

∂

∂x

(
u2

2
+ p

)
(4.2)

for y, z ≈ 0. Thus, the vorticity flux on the symmetry plane near the free surface
contains two contributions: acceleration of the tangential velocity u and the tangential
gradient of the energy head u2/2 + p. In the latter term, the deviation of p on z = 0
from its constant value at z = η cannot in general be neglected. The two separate
contributions in (4.2) are also plotted in figure 11(a). The magnitudes of the two
contributions are comparable at this phase of the connection process.

It is useful to define the total viscous flux of the vorticity at the surface as

Fi ≡ 1

Re

∫ ∫
∂ωi

∂z

∣∣∣∣
z=0

dxdy ≡ 1

Re

〈
∂ωi

∂z

∣∣∣∣
z=0

〉
, i = x, y, z, (4.3)
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Figure 12. Time evolution of the vorticity flux at the free surface:
———— , Fx; – – – – , Fy; – · – · – , Fz .

where here and hereafter, the integration implied by 〈 · 〉 is performed over the y > 0
half-plane only, since the flow is symmetric. Figure 12 plots the time evolution of
Fx, Fy , and Fz . While Fz is negligible, the viscous flux of horizontal vorticity
is significant during connection especially Fy which reaches a maximum value just
after tmid. (Note that positive values of Fy imply outward flux of negative primary
transverse vorticity.) The results agree well with previous studies.

The different behaviours of the components of F can be understood from the
dynamic free-surface boundary conditions and the concept of a free-surface viscous
layer (see § 4.2.1). As we show later, ωx, ωy , and ∂ωz/∂z (but not ωz itself) diminish
rapidly over a thin viscous surface layer, so that at the free surface, ∂ωx/∂z, ∂ωy/∂z
are large while ∂ωz/∂z is negligible. As a result, the outward viscous fluxes of ωx, ωy
are large and are responsible for the disappearance of ωx, ωy in the viscous layer. For
ωz ,Fz is small and the surface-normal vorticity increases during the connection. Thus,
outward flux of horizontal vorticity is the key mechanism for vortex disconnection at
a free surface.

4.2. Detailed mechanism of vortex connection at a free surface

A main objective of this study is to obtain, using numerical simulations, the detailed
structures and mechanisms of vortex connection at a free surface. For specificity, we
consider case II of table 2.

We find that a key to this understanding is to identify the surface layers – an outer
blockage layer associated with the free-surface kinematic boundary condition, and an
inner viscous layer due to the stress-free dynamic condition at the free surface – and
the different mechanisms of vortex evolution/transformation in each layer.

4.2.1. Surface viscous and blockage layers

A free surface affects the underlying flow by means of two mechanisms: first,
the dynamic boundary conditions require that the tangential stresses at the surface
vanish; second, the kinematic boundary condition constrains the motion normal to
the surface. These two mechanisms respectively cause two distinct regions near the
free surface: an inner viscous layer and an outer blockage layer.

The blockage layer is the region where the kinematic boundary condition is felt.
Throughout the blockage layer, the vertical velocity component diminishes. From
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Figure 13. Vertical variations in the surface layers for Case II. (a) 〈w2〉; (b) 〈ω2
y〉; and

(c) 〈(∂ωz/∂z)2〉 at t =: ———— , 6; – – – – , 7; – · – · – , 8.

continuity (2.2), the thickness of the blockage layer δb should be comparable to the
characteristic length scale of the flow.

The surface viscous layer is due to the vanishing of the tangential stresses at
the surface. It is therefore a result of viscous effects and is absent, for example, in
Euler flow. In contrast to the blockage layer, the viscous layer near the surface does
not affect the velocity but instead the vertical variations of the horizontal vorticity
components ωx, ωy , and the z-derivative of the vertical vorticity component, ∂ωz/∂z.
From (2.12), (2.11) we have

ωx =
∂w

∂y
− ∂v

∂z
= O(ε)

ωy =
∂u

∂z
− ∂w

∂x
= O(ε)

 on z = 0. (4.4)

Using the fact that vorticity is divergence free, we obtain

∂ωz

∂z
= −∂ωx

∂x
− ∂ωy

∂y
= O(ε) on z = 0. (4.5)

Therefore, at small Froude numbers, the values of ωx, ωy , and ∂ωz/∂z (but not ωz
itself) change from their ‘outer’ values to small surface values over the distance of
the viscous layer. In a way similar to Prandtl’s boundary layer near a solid wall, the
balance between viscous and convection terms in the evolution equations for ωx or
ωy gives the thickness of this viscous layer, δv ∼ Re−1/2.

The presence of the two surface layers in the vortex connection process is shown in
figures 13 at different t. Figure 13(a) plots the variations of 〈w2〉 with z which reveal
a blockage layer for z & −0.4. As mentioned above, the viscous layer manifests as
the sharp decrease of ωx, ωy , ∂ωz/∂z. Figures 13(b), 13(c) plot 〈ω2

y〉 and 〈(∂ωz/∂z)2〉
which show clearly a viscous layer of thickness δv ∼ 0.1.

The importance of the blockage layer is that the bulk of vortex stretching and
turning occur in this layer as the vortex approaches the surface, reaching their
maximum rates at the lower boundary of the viscous layer. Viscous effects take over
in the inner viscous layer and are responsible for the disappearance of transverse
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vorticity and the strengthening of surface normal vorticity. These are elucidated
below.

4.2.2. Vorticity transformations in the surface layers

The equation for vorticity evolution is

Dω

Dt
= ω · ∇V +

1

Re
∇2ω. (4.6)

The first term on the right hand side of (4.6) is associated with the vortex stretching
and turning, and can be rewritten as

∇V = 1
2
(∇V + (∇V )T ) + 1

2
(∇V − (∇V )T ) = S + 1

2
D ,

where S and D are respectively the symmetric and antisymmetric strain rate tensors:[
Sij
] ≡ 1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

D ≡
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
For any vector A, we have A ·D = A× ω. Therefore,

ω · ∇V = ω · (S + D/2) = ω ·S + ω × ω/2 = ω ·S .
Thus, (4.6) can be written as

Dω

Dt
= ω ·S +

1

Re
∇2ω. (4.7)

The physical meaning of ω ·S is clarified if we decompose it into two perpendicular
directions (see figure 14): one along ω, which we denote by the unit vector eω , and the
other in the (ω ·S)-ω plane, which we denote by the unit vector et. That is, eω ≡ ω/|ω|,
and, et ≡ (ω ·S− (ω ·S · eω)eω)/|ω ·S− (ω ·S · eω)eω|. With these definitions, (4.7) can
be written as

Dω

Dt
= (ω ·S · eω)eω + (ω ·S · et)et +

1

Re
∇2ω ≡ Vseω +Vtet +Vd, (4.8)

where the vortex stretching term is Vs ≡ ω ·S · eω , the turning term Vt ≡ ω ·S · et,
and the diffusion term Vd ≡ Re−1∇2ω.

The main consequence of vorticity connection at the free surface is the increase
in the normal component ωz accompanied by decrease in the horizontal vorticity
component (in this case ωy). For later reference, we write the components of (4.8) as

Dωi
Dt

=Vsi +Vti +Vdi , i = x, y, z, (4.9)

where Vsi ≡ Vs(eω · ei), Vti ≡ Vt(et · ei), and Vdi ≡ R−1
e ∇2ωi (i = x, y, z) are respec-

tively the stretching, turning and diffusion components in the ith direction. Note that
Vd is the gradient of the vorticity flux discussed in § 4.1.5.

We first investigate averaged quantities over a horizontal (half) plane. Figure 15
plots the vertical variation of 〈Vs〉 and 〈Vt〉 at t = 7. As the primary vortex
approaches the free surface, both stretching 〈Vs〉 and turning 〈Vt〉 increase over the
blockage layer and then decrease rapidly within the viscous layer. According to (4.4),
at the free surface, ωx, ωy ∼ O(ε) � ωz , vorticity is almost perpendicular to the free
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Figure 15. Vertical variation of 〈Vs〉 (———— ), and 〈Vt〉 (– – – – ) for Case II at t = 7.

surface and therefore there is little vortex turning taking place at the surface. Vortex
stretching, dominated by Vsy in the blockage layer, also decreases over the viscous
layer because ωy itself diminishes. Unlike 〈Vt〉, 〈Vs〉 still has a finite value at the free
surface because of the stretching of ωz (as pointed out earlier, it is ωx, ωy , ∂ωz/∂z,
but not ωz , that decrease over the surface layer).

Figure 16 plots the components of vortex stretching, turning and diffusion: 〈V`i〉,
` = s, t, d and i = x, y, z. Note that, since 〈ωy〉 (associated with the ring) is negative
as is 〈ωx〉 (for y > 0 half plane for 0◦ < α < 90◦), positive values of 〈V`i〉 for i = x, y
decrease the magnitude of that vorticity component; while the opposite is true for
〈V`z〉 (since 〈ωz〉 is positive for the y > 0 half plane). From these plots, we observe
the following. (i) All components of stretching increase inside the blockage layer. Over
the viscous layer, stretching of ωx and ωy drops sharply while stretching of ωz does
not diminish. (ii) The magnitudes of all turning terms increase over the blockage layer
and reach their maxima around the lower boundary of the viscous layer (z ∼ −δv).
For z > −δv , these magnitudes decrease – ωy loses through vortex turning while ωz
gains. (iii) Diffusion becomes significant near the surface. This leads to a decrease of
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Figure 16. Vertical variations of the components of vortex stretching, turning and diffusion, 〈V`i〉
at t = 7 for i = (a) x; (b) y and (c) z. The lines are: ———— , stretching (` = s); – – – – , turning
(` = t); and – · – · – , diffusion (` = d). Note that the magnitude scales are different in each figure.

|〈ωy〉| which is fluxed out of the free surface (§ 4.1.5), and a transport of 〈ωz〉 towards
the surface where it increases (Fz is negligible at the surface, cf. figure 12).

The time evolution of 〈V`i〉 also provides important information about the vortex
dynamics during connection. It is convenient to study 〈V`i〉(t) at fixed values of depth
z, in which case it is important to consider also the averaged (vertical) convection,
〈Vci〉 ≡ 〈−∂(wωi)/∂z〉.

Figure 17 shows the time evolution of 〈ωz〉 at the free surface z = 0. The rate
of change of 〈ωz〉 is equal to the sum of 〈V`z〉, ` = s, t, d, c. These components are
plotted separately in figure 17. As connection occurs, 〈ωz〉 at the surface increases
due to viscous diffusion and vortex stretching, with 〈Vdz〉 reaching a maximum at
t ∼ tmid and 〈Vsz〉 somewhat later. Consistent with figures 15 and 16, the effect of
vortex turning, Vtz , is negligible at z = 0 for all t. Note that

−〈Vcz〉 =

〈
∂wωz

∂z

〉
=

〈
w
∂ωz

∂z

〉
+

〈
ωz
∂w

∂z

〉
. (4.10)

At the free surface, the first term of (4.10) is small since both w and ∂ωz/∂z are small,
while the second term is approximately 〈Vsz〉 since ω is dominated by its normal
component. Thus, the effects of 〈Vsz〉 and 〈Vcz〉 approximately cancel at z = 0 as can
be seen from figure 17. Since 〈Vsz〉, 〈Vcz〉 approximately cancel and 〈Vtz〉 is small,
the increase of 〈ωz〉 in time and hence the connection itself are mainly the effect of
viscous diffusion 〈Vdz〉. This is to be expected and is consistent with the limit of
Fr → 0.

The picture is qualitatively different a small distance below the surface outside the
viscous layer. Figure 18 shows the same quantities as figure 17 but at z = −0.1. In
this case, 〈Vsz〉 and 〈Vcz〉 no longer cancel; the net contribution is positive (which
increases 〈ωz〉) at the early connection stage (t . tmid), but is negative (due to a larger
convection) later. The role of viscous diffusion is also more complex than in figure
17: 〈Vdz〉 increases ωz at the very beginning of connection (t . tbeg) only, but then
changes sign (after t ∼ 5.5), so that diffusion removes ωz at z . −δv (and adds it to
that at z & −δv; cf. figure 16c). Vortex turning now plays an appreciable role, mainly
to add to ωz (from ωy). In summary, at the lower boundary of the viscous surface
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Figure 17. Time evolution at the free surface z = 0 of 〈ωz〉/5 (−−− −−− ); and components of
the vortex evolution 〈V`z〉, ` = s, t, d, c: ———— , stretching (` = s); – – – – , turning (` = t);
– · – · – , diffusion (` = d); · · · · · · · , convection (` = c).
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Figure 18. Time evolution just outside the viscous surface layer, at z = −0.1, of 〈ωz〉/5
(−−− −−− ); and components of the vortex evolution 〈V`z〉, ` = s, t, d, c: ———— , stretching
(` = s); – – – – , turning (` = t); – · – · – , diffusion (` = d); · · · · · · · , convection (` = c).

layer, vortex stretching and turning are the two main processes leading to the increase
of ωz .

As seen in figure 18, outside the viscous layer, vorticity turning makes a significant
contribution to ωz . That this comes from ωy is shown in figure 19 where we plot, at
z = −0.1, the time evolution of 〈ωy〉 and 〈V`y〉, ` = s, t, d, c. As the primary vortex
approaches the free surface, |〈ωy〉| at this depth increases for t < tmid due to vortex
convection 〈Vcy〉 and stretching 〈Vsy〉. For t > tmid, |〈ωy〉| decreases as diffusion 〈Vdy〉
and turning 〈Vty〉 overcome 〈Vcy〉 and 〈Vsy〉. Unlike 〈ωz〉, all the 〈ωy〉 is eventually
removed by 〈Vdy〉 and 〈Vty〉 after a long time.

We note that the physical problem is neither stationary nor homogeneous, and
that the preceding discussions in terms of spatial averages (in the horizontal half-
plane) provide in some sense only a global picture. These results can be augmented
by considering spatial variations of the vorticity transformation terms which also
provide information on the location and region of vortex connection.

Figure 20 plots on z = 0 and at t = 7 the contours of ωz as well as terms
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Figure 19. Time evolution just outside the viscous surface layer, at z = −0.1, of 〈ωy〉/5
(−−− −−− ); and components of the vortex evolution 〈V`y〉, ` = s, t, d, c: ———— , stretching
(` = s); – – – – , turning (` = t); – · – · – , diffusion (` = d); · · · · · · · , convection (` = c).

contributing to its evolution. Plotted also is the contour C of |ω| = 0.25ωc at
z = −0.1 which gives an indication of the position of the impinging primary vortex.
Comparing the figures, we see that the regions of large |ωz| correlate well with those
of vortex diffusion (Vdz) and stretching (Vsz). Comparing to the contour C, we
note that these regions occur at the aft-shoulder areas of the primary vortex. This is
consistent with the concept of ‘bridging’ (Kida et al. 1991).

The features ofVsz can be understood from the variation of ∂w/∂z induced by the
primary vortex underneath. Figure 20(d) shows that ∂w/∂z is positive (down-wash
or stretching) behind and negative (up-wash or compressing) in front of the primary
vortex, with the two maxima of the former located approximately where those of |ωz|
(and Vsz) are.

The contours of vorticity transformation for ωz at z = −0.1 are plotted in figure
21. Different from that at the free surface, diffusion removes ωz at the aft-shoulder
regions (and puts it at the free surface, see figures 16c and 20b). Vortex stretching
still helps increase ωz , as shown in figure 20(c). It should be noted that at z = −0.1,
vortex turning is another cause for the increase of ωz at the aft-shoulder regions,
which is shown clearly in figure 20(d).

Figure 22 plots the contours of vorticity transformation for ωy at z = −0.1. The
magnitudes ofVdy andVsy are significant over the entire region bounded by C while
Vty is still localized at the aft-shoulder regions. Note that in this case, Vdy and Vty

contribute to the decrease of ωy magnitude which is greater than the stretching Vsy

effect which increases it.
It is useful to examine the spatial correlation of the different quantities in figures

20–22 to the rate of change of the connected (normal) vorticity on the free surface
Dωz/Dt(x, y; z = 0). Our interest is to pinpoint their specific contributions to the
increase of the latter. For this purpose, we define the correlation coefficients:

Cor [V`i(x, y; z = const)] ≡ 〈Dωz/Dt(x, y; z = 0)V`i(x, y; z = const)〉
〈(Dωz/Dt(x, y; z = 0))2〉1/2〈(V`i(x, y; z = const))2〉1/2 .

Figure 23 plots the time evolution of these correlations. For vorticity transformation
quantities on the free surface z = 0, both Cor [Vsk(z = 0)] and Cor [Vdz(z = 0)]
are positive throughout. For stretching, the correlation is high for all t & tbeg; while
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Figure 20. Contours on z = 0 at t = 7 of (a) ωz/ωc (contour increment 0.05); (b) Vdz (contour
increment 0.05); (c) Vsz (contour increment 0.05); and (d) ∂w/∂z (contour increment 0.1). Solid
contours represent positive values while dashed lines represent negative values. The thick line is the
contour C corresponding to |ω|/ωc = 0.25 at z = −0.1.

for diffusion, Cor [Vdz(z = 0)] is high for t . tmid. This behaviour agrees with the
proceeding observation that the increase of surface-normal vorticity is mainly due to
vortex stretching and viscous diffusion at the surface; the former is important for
later times and the latter for earlier times.

As we have seen, vorticity transformations outside the surface viscous layers are
important mechanisms in the surface connection. As expected, the correlation of
Dωz/Dt(z = 0) with Vty(z = −0.1) is high throughout the connection process
indicating the main origin (the primary transverse vorticity ωy) and mechanism
(vortex turning) of the surface-connected normal vorticity. Just like at z = 0, vortex
stretching also plays an important role here and Cor [Vsz(z = −0.1)] is high on the
average. The key vehicle of vertical vorticity transport to the free surface is viscous
diffusion: Cor [Vdz(z = −0.1)] is negative for tbeg < t < tend, indicating that the
removal of ωz at this level by viscous diffusion is directly correlated with the increase
of ωz at the surface.

In conclusion, we find that the surface layers are key to understanding the mech-
anism of vortex connection at a free surface: In the blockage layer, ωz increases
due to vortex stretching and vortex turning (from ωy). This vertical vorticity is then
transported to the free surface through viscous diffusion over the viscous layer. This
viscous diffusion and (vertical) vortex stretching at the surface are the main reasons
for the increase of surface-connected normal vorticity. Two factors contribute to the
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Figure 21. Contours on z = −0.1 at t = 7 of (a) ωz/ωc (contour increment 0.05); (b) Vdz (contour
increment 0.05); (c) Vsz (contour increment 0.05); and (d) Vtz (contour increment 0.05). Solid
contours represent positive values while dashed lines represent negative values. The thick line is the
contour C corresponding to |ω|/ωc = 0.25 at z = −0.1.

disappearance of transverse vorticity ωy as it approaches the free surface: vortex
turning of ωy into ωz in the blockage layer, and large diffusion of ωy within the
viscous layer (which is then fluxed out of the free surface). Figure 24 summarizes this
picture schematically.

4.3. Vortex connection time and streamline topology

The vortex connection time or duration, T , is an important measure of the vortex
connection phenomenon. The dependence of T on physical parameters of the free-
surface vortex interaction (Reynolds and Froude numbers and incidence angle) is
also of practical interest. A definition of T based on the discussions of § 4.1 and § 4.2
(tbeg and tend, or appreciable changes of horizontal and vertical plane circulations)
is necessarily qualitative and to some extent subjective. We propose to use a more
quantitative/objective definition of T based on the topology of the streamlines on
the free surface.

4.3.1. Streamlines on the free surface and vertical symmetry plane

Since streamlines are in general not Galilean invariant, here and hereafter we
only consider them in a fixed frame (with respect to the quiescent far field). The
topology of the streamlines can be classified in terms of its nodes, N, and saddle
points, S . The numbers of these on a surface, say NN and NS respectively, satisfy
specific summation rules (e.g. Hunt et al. 1978): NN −NS = 2; and when a node
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Figure 22. Contours on z = −0.1 at t = 7 of (a) ωy/ωc (contour increment 0.05); (b) Vdy (contour
increment 0.05); (c) Vsy (contour increment 0.05); and (d) Vty (contour increment 0.05). Solid
contours represent positive values while dashed lines represent negative values. The thick line is the
contour C corresponding to |ω|/ωc = 0.25 at z = −0.1.

or a saddle appears on the boundary of the surface (say the symmetry plane),
NN + 1

2
NN ′ −NS − 1

2
NS ′ = −1, where NN ′ (NS ′) is the number of such boundary

nodes (saddles).
Figure 25 plots the streamlines on the free surface for Case II at different stages of

the connection. Prior to connection, t = 3 (figure 25a), there are two stagnation points
on the centreline: a sink (N1) inside the ‘down-wash’ region where the connection
occurs later, and a source (N2). At an early stage of connection, t = 5 (figure 25b),
N2 and N1 both move downstream with the underlying ring but the distance between
them is shortening while the sink (N1) has begun to turn into a saddle. The latter is
fully formed at t = 6 (figure 25c) which shows a saddle (S ) with two spirals (N3) and
(N4) at its two ends. These two spirals lie at the locations of vortex connection on the
free surface. At a later stage of the connection process, t = 7 (figure 25d), the source
(N2) moves toward the saddle (S ) and the two begin to merge on the centreline. After
the connection, t = 9 (figure 25e), the singular points on the centreline completely
disappear and the two spirals become fully developed. Note that NN −NS = 2 is
satisfied at all times.

Figure 26 shows the streamlines in the upper portion of the vertical symmetry plane
at the corresponding times. At t = 3 (figure 26a), there are two (half) saddle points
(S ′1, S ′2) at the free surface on either side of the streamlines of the secondary surface
vorticity. At t = 5 (figure 26b), the top part of the vortex ring reaches the free surface,
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Figure 24. A schematic plot of vorticity transformation mechanism near the
free surface during connection.

and S ′1, S ′2 approach each other on the free surface. The presence of the secondary
surface vorticity is diminished as is the size of the primary vortex. At t = 6 (figure
26c), neither the primary nor the secondary vorticity can be clearly distinguished. At
later times (t = 7, 9) S ′1 and S ′2 merge and disappear and there is no singular point in
this portion of the symmetry plane.

4.3.2. Connection time and its dependence on Fr , Re and α

In the absence of quantitative information regarding the vorticity, Bernal & Kwon
(1989) defined the connection time T as the elapsed time from the initial contact
of the vortex ring with the free surface to the time when two dimples are first
observed as distinct dark spots on the free surface. In addition to the somewhat
non-precise definition of the beginning and ending events, a definition of the latter
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Figure 25. Streamlines on the free surface (Case II) at t = (a) 3; (b) 5; (c) 6; (d) 7; (e) 9.

based on surface elevation features does not, in general, provide direct correlation
with evolution of the connected vorticity (cf. figure 8 and Appendix).

If circulation data are available, it is common to define T in terms of the time
required for appreciable fractions of the circulations on the relevant (half-)planes to be
gained or lost. While this definition provides a useful measure in a global/integrated
sense, the definitions of these fractions are necessarily imprecise and, if chosen
inappropriately, may obscure the dependence of T on changes in the parameters of
the problem.
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If the flow topology is known, a useful and objective definition of T can be obtained
in terms of the changes of the streamline topology on the free surface. Referring to
figure 25, we observe that the vortex connection process is characterized by the
appearance and then disappearance of a saddle (S) in the free-surface streamlines.
The appearance of the saddle is accompanied by spirals at the two ends which
indicate vortices connected there. Thus, the change of the (sink) node (N1) to a
saddle corresponds to the beginning of connection, and the cancellation of the saddle
with the (source) node (N2) to the end of the vortex connection. We therefore
define the connection time based on streamline topology, Tψ , as the elapsed time
between the appearance and the disappearance of the saddle. We note that such a
definition of connection time can be readily implemented in physical experiments
where instantaneous horizontal velocity fields at the free surface are available (say
using DPIV).

For comparison, we define a connection time based on velocity circulation, TΓ , as
the elapsed time for Γz/Γ0 on the free surface to increase from 0.2 to 0.75. These
fractions are chosen so that Tψ and TΓ are approximately the same for the Case II
we have been considering so far. The values of Tψ and TΓ for the different cases
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Figure 27. Dependence of connection times Tψ and TΓ on initial vortex ring
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are given in table 2. Comparing Cases I and II, we see that Tψ and TΓ are close
for this case regardless of Froude number. Comparing Cases II–IV where (only) α
is different, we see that Tψ and TΓ differ substantially as α decreases. For the same
(small) α, comparing Cases IV–VI, we see that the differences between Tψ and TΓ
are larger for greater Re. Overall, it is seen that Tψ is much more sensitive to changes
in the physical parameters, and as a diagnostic, should be more useful than TΓ for
understanding/distinguishing vortex connections under different physical conditions.

From table 2 Cases I and II, we see the free-surface case (Case II) has a somewhat
smaller Tψ relative to the free-slip case (Case I) (the free-surface effect cannot be
discerned from TΓ ). That the presence of a free surface decreases connection time
can be expected. The vortex connection at a free surface is characterized by the
generation of secondary surface vorticity (§ 4.1), which, being of opposite sign to that
of the primary vortex, accelerates the connection process. For this value of Fr , the
overall effect is, however, still relatively small.

From table 2 Cases II–IV, we see that there is a strong effect of initial ring incidence
angle α on Tψ (and TΓ ). This dependence is plotted in figure 27. Tψ increases with
decreasing α with a roughly linear dependence in the range of α shown. We observe
that TΓ also increases with decreasing α although the changes are relatively small.
This phenomenon that smaller α takes longer for the vortex to connect is consistent
with previous studies (e.g. Kida et al. 1991).

Finally we examine the influence of Reynolds number by comparing Case IV
(Re = 1570), Case V (Re = 942), and Case VI (Re = 471) in table 2. The connection
time based on streamline topology shows clearly the decrease of Tψ with decreasing
Reynolds number. Since the connection process is ultimately diffusion controlled, the
decrease of connection time with increase of viscosity is expected (e.g. Kambe 1984;
Saffman 1990; Shelley et al. 1993). Interestingly, this behaviour is not shown in TΓ
which in fact increases somewhat with decreasing Re.

5. Conclusions
We study, as a canonical example of laminar free-surface vortex connection, the

laminar interactions at a free surface when an oblique vortex ring impinges on the
surface. We perform numerical simulations of the Navier–Stokes equations with vis-
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cous free-surface boundary conditions. The connection process is elucidated in detail
by investigating vortex structure, free-surface elevation, surface secondary vorticity,
vorticity flux at the free surface, and streamline topology.

A primary objective is to understand the detailed mechanism of the vortex con-
nection. We find that a key to this understanding is the identification of two surface
layers near the free surface: an inner viscous layer and an outer blockage layer,
which are caused by the dynamic and kinematic free-surface boundary conditions,
respectively. The mechanisms of vorticity transformations via turning, stretching,
and diffusion take on distinct roles in the surface layers: the dominant mechanism
in the blockage layer is that of vortex turning, that in the viscous layer is that
of viscous diffusion, while vortex stretching (of primarily the surface-parallel and
surface-normal vorticities in the outer and inner layers respectively) is important
throughout.

With the availability of the flow field, we apply finally a definition of vortex
connection time based on the change in topology of the free-surface streamlines. This
definition is precise and objective, and is found to be more useful to quantify the
dependence of connection time on the physical parameters compared to a definition
based on velocity circulations.

This research was supported by the Office of Naval Research under the program
management of Dr E. P. Rood. The authors wish to thank Professor M. Gharib for
the experimental results we use for comparison, and for valuable discussions during
the course of this study.

Appendix. Relation between elevation and normal vorticity at a free
surface

Surface disturbances are often used to infer information regarding the underlying
connected vorticity at the surface (e.g. Bernal & Kwon 1989). We show in this
Appendix, through two simple examples, that surface vertical vorticity and elevation
are not necessarily well correlated.

Assuming steady flow and ignoring viscosity, we have

∇
(
P +

V 2

2
+

z

F2
r

)
≡ ∇H = V × ω,

and hence

∇2H = ∇ · (V × ω). (A 1)

On the free surface, P = 0, and we solve (A 1) to obtain

η = F2
r

(
−V

2

2
+H

)
. (A 2)

If the vorticity field ω is (vertically) axisymmetric, it follows from symmetry that
η must be also, and hence η and ωz must be well correlated. We now consider two
examples where ω is not (vertically) axisymmetric: (a) a two-dimensional (ωz only)
non-circular vorticity distribution; and (b) a three-dimensional vorticity distribution
corresponding to an oblique circular cylinder making a 10◦ angle with the vertical
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Figure 28. Contours of free-surface elevation η and surface-normal vorticity ωz
for examples (a) and (b).

axis. Solving (A 1) and (A 2), we obtain η corresponding to these vorticity distribution.
Figure 28 compares contours of η and ωz , which show that neither the contour shapes
nor maximum positions correspond. Thus a correlation between η and ωz does not
in general obtain.
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